AU-A127 BS1 DISTRIBUTION OF FUNCTIONALITY AND LEVELS OF

FUNCTIONALLITY AS A SOLUTION T..(U) NORTH CAROLINA

AGR1 AND TECHMICAL STATE UNIV GREENSBO. .
UNCLASSIFIED W L MARTIN ET AL. APR 03 ARO-18591.1-EL-N F/0 9/2 NL

TETT T TN

——— . -

o

Ig IZ.

e

|
| By IES mu

FEFEEER R
EEET
ic
N

=
m.w
o

rr
r
re

E
oo

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS ~ (963~ 4

OTE FILE COPY

Unclassified ! . /// “:7/
SECURITY CLASSIFICATION OF THIS PAGE (When Data Brtered) ’

READ INSTRUCTIONS !
REPORT DOCUMENTATION PAGE p CEAD INSTRUCTIONS ok,
T REPOAT NUMBER 2. GOVT ACCESSION NOJ 3. RECIPIENT’S CATALOG NUMBER
R NS I §<
- - - A A
w]rgz‘?l;]smsku:‘ 6. TYPE OF REPORT & PERICD COVERED
Final:
Distribution of Functionality and Levels of 15 Aug 81 - 15 Feb 83
Functionality as a Solution to the CONOPS s. PERFORMING ORG. REPORT NUMBER
Problem
AUTHOR(s) ®. CONTRACY OR GRANT NUMBER(?)
Harold L. Martin DAAG29 81 G 0009

Pakize S. Pulat

PERFORMING ORGANIZATION NAME AND ADDRESS 10. ::gﬁﬂk: ELEMENT, PROJECT, TASK

& WORK UNIT NUMBERS
North Carolina Agricultural & Technical State U
Greensboro, NC 27411

. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE
U. S. Army Research Office Apr 83
Post Office Box 12211 13. NUMBER OF PAGES

Research Triangle Park, NC 27709 13
e ORITGRING AGENCY NARE & AODRESS(I dilierent from Controfiing Office) | 15. SECURITY CLASS. (of this report)
15e. DECL ASSI 'chT|°N7 ODOWNGRADING

"
0
X
m;
g
r
L]

T OISTRIBUTION STATEMENT (of thie Report)

Approved for public release; distribution unlimited.

T~
17. DISTRIBUTION STATEMENT (of the sbstract entered in Block 20, il ditferent lrem Report) A A

18. SUPPLEMENTARY NOTES

The view, opinions, and/or findings contained in this report are those of the
author(s) and should not be construed as an official Department of the Army
position, policy, or decision, unless so designated by other documentation

19. KEY WORDS (Continue on reveree side If y and identily by block ber)

ABSTRACT (Tentinue am reverse sidd ¥ y amd idontily by bleek ber)

This document is the final report #9r a research project sponsored by the
United States ?c"s’ﬁid'y’”fﬁe stribution of functionality within a
distributed systeém so as to provide the system with graceful degradation. In
addition, overall system capabilities were studied in an effort to describe
system performance as system resources were alleviated due to failure.

oD .3, €o1TioN OF ! nvboso-ulg 23 UNCLASS | F1ED

83 05 SLCTRTY CLABR FICATION GF TWIE PAGE W Dova Batersd)

Period: August 14, 1981 to February 15, 1983

D-. Herold L Mertin

DK IR 7 &5/

Department of Electrical Engineering

e—— i e

et —

. - —

Distribution Of Functionality And Levels Of Functionality

As A Solution To The CONOPS Problem

Research Agreement No. DAAG29-81-G-0009

Period: August 14, 1981 to February 15, 1983

Dr. Harold L. Martin

Department of Electrical Engineering

Dr. Pakize S. Pulat

Department of Industrial Engineering

North Carolina Agricultural And Technical State University

Greensboro, North Carolina 27411

femm e

1.0

2.0

3.0

4.0

5.0
6.0

7.0

CONTENTS

Introduction

Research Description

2.1 The Problem
2,2 Brief Review of Literature

The Assignment of Modules to Processors

3.1 Development of Model
3.1.1 Assignment Model

3.2 Extensions to Model
3.3 Assignment of Additional Modules

3.4 Scheduling Modules to Processors Using
Network Flow Approach
3.4.1 Flow-Chart for the Algorithm
3.4.2 Example 1
3.4.3 Example 2

Scheduling Algorithm

4.1 Multiprocessor Scheduling Algorithm
Summary

References

Appendices

Appendix I - Solution of the Assignment Problem
Appendix II - Assignment of Extra Modules to
Processors
Appendix III ~ Network Flow Approach to two
Processor Scheduling Example
Problem
Appendix IV - Network Flow Approach to Three
Processor Problem
Appendix IV-A 'JAN'; Processor S1 is Active
and the dummy processor S4 is
connected to processor Sy & Sj3.

Appendix IV-B 'JANA'; Processor So is active
and the dummy processor S, is
connected to processor S} & Sj.

Appendix IV-C 'JANAK'; Processor S3 is active
and the dummy processor S; is
connected to processor Sy & Sj.

PAGE

o U

10

10
14

18
19
22
24
29
38
38
42
44

46
47

52

55

59

USEAA

- -

Figure

Figure

Figure

Figure

Figure
Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

2.1

3.1

3.2

3.3

3.4

3.5

3.6

3.7

3.8

3.9

3.11

3.12

LIST OF FIGURES

The proposed model of the distributed
system.

The distributed processing system
illustrating the assigning mechanism.

The example of the ideal balanced
assignment strategy.

An example to the network representation
of the problem.

Example of a multicut.
Intermodule communication graph.

Intermodule and module-to-processor
communication graph.

The solution to the two processor problem.
The module interconnection network.
Illustration of processor S; active and
the dummy processor S; connected to Sy

and Sj.

Illustration of processor Sy active and the
dummy processor S, connected to S| and Sj.

Illustration of processor S3 active and the
dummy processor S, connected to Sq and Sj.

Optimal module to processor schedule.

PAGE

11

13

23
23
26

27

28

30

33

34

35

37

-~ ———— - -

*

ABSTRACT

This document is the final report for a research project sponsored Dby
the United States Army to study the distribution of functionality within a
distributed system so as to provide the system with graceful degradation.
In addition, overall system capabilitles were studied in an effort to

describe system performance as system resources were alleviated due to

failure.

- - r—— .

1.0 INTRODUCTION

The currently existing systems employed by the military, which consist
of a function or functions residing on a single processing unit, fail in
the worst possible way in the field. That 1s, when the processing unit is
destroyed, the function ceases to exist. This, coupled with the
impossiblilty of reverting to a manual method - since much of the doctrine
for the function becomes embedded in the automated system —~ leads to an
intolerable situation in the field. 1In essence, the operational capability

of a unit can be destroyed by destroying its computer.

A method of supplying systems which differ in a fundamental way from
the current "point system™ approach was studied. This method is based upon
a combination of distribution of the functionality of a system across a
network of processing wunits and provisions of each function (and the
subfunctions of which it is made of) in a number of locations in the
network with a number of 1levels of functionality. In operation, the
request for a function causes the best instance of that function currently
available to the requesting processor to be invoked. Graceful degradation
may be provided by making this best function dynamic in the sense that,
depending upon the currently existing system configuration, the function
can be rescheduled if it was lost during the previous scheduling attempt or
if the scheduled hardware 1is currently unavailable. Clearly, such an
approach would ensure the availability of computer capability over a more
extended period of time than the single stand-alone computers presently
being employed. Further, there are other advantages to wutilizing such a

distributed system. First, a more powerful capability can be nade

o e o

PO

available by interconnecting several computer systems together 1in a
distributed fashion. Secondly, the computer systems used need not be all
that expensive since the distributed system will require that functions be
segmented 1Iin such a way that they can run on a less powerful and less
expensive machine. Thirdly, since the system modules will be assumed to be
identical for this research (but in reality may or may not be), it is much

easler and more economical to replace any faulty or destroyed modules.

2.0 RESEARCH DESCRIPTION

In recent years distributed processing systems have been a subject of
interest due to the availability of computer networks and the availability
of microprocessors for use in inexpensive distributed computers.
Therefore, this study attempts to develop a scheduling algorithm for a
distributed system, to improve the total system performance and to
effectively utilize all system resources. The objective of the scheduling
algorithms is to minimize the processing time of the system, balance the
load among the available processors and to increase the efficiency of the
total system. This study also attempts to develop a rescheduling algoritha
which provides a means of regaining a function when it has been lost due to
loss of a particular coanstraint attached to the distributed systems. The
introduction of the microprocessor has made distributed processing an
increasingly popular notion {in the computer industry. Economics of
fabrication have substantially reduced the cost of replacing processors in
a system, making distributed processor systems economically attractive.
Microprocessors have created an environment that is fostering the growth of

distributed computation.

————— e e e

——e am——

- > e—

By a distributed computer system in which there exist several
progammable processors, and inwhich typical computations vigit two or more
processors during an execution. The distributed programs that we consider
in our analyses are assumed to be made up of modules that are, in general
faceed to reside on any processor if it is not an attached module, 1in the

distributed system.

Distributed computer systems appear to offer extensibility
improvements over these configurations due to decentralization of the
interconnection and control logic (both hardware and software). As the

system 1s scaled up in size, nonlinearities and boundary conditions in

performance are less likely than for centralized systems.

2.1 The Problem

The existing systems employed by the military, consist of a function
or functions residing on a single processing unit with the result that when
the processing unit is destroyed, the function ceases to exist. This
coupled with the impossibility of reverting to a manual method-since much
of the doctrice for the function becomes embedded in the automated

system—leads to an intolerable situation in the field.

A method of supplying systems which differ in a fundamental way from

the current “"point systems" approach is proposed for investigation.

This method 13 based upon a combination of distribution of the
functionality of a system across a nunetwork of processing units and

provisions of each function (and the sub—~functions of which it is made of)

—————— e

Py

- O A ———. ot s

in a number of locations in the network with a number of levels of
functionality. In operation, the request for a function causes, the best
instance of that function currently available to the requesting processor
to be invoked. Depending upon the currently existing system configuration,
the function can be rescheduled if it was 1lost during the previous
scheduling attempt or if the schedule hardware 1is currently unavailable.
Clearly, such an approach would ensure the availability of computer
capability over a more extended period of time than the single stand-alone

computers presently being employed.

The proposed model of the distributed system to be considered in this
research 1is shown in Fig. 2.l1. Although the system is depicted with only
five modules and 3 processors there may be many more, or even less modules.
Each module 1is defined c¢o have a set of resources, such as CPU speed,
memory size, computational power, etc. These resources may or may not be
the same for each module. The solid arrows indicates the communications
link over which programs and data are transferred between the various
modules. The dashed arrows indicate that a communications link could

possibly exist between the modules as shown.

As stated earlier, the number of modules and the exact {interconnection
of these modules may vary depending upon the configuration that supports
the most efficlent scheduling algorithm. Therefore, in the project we
investigated and developed a heuristic that will schedule functions to

modules subject to constraints that are well defined.

sd[Npo - I pue ‘q ‘o ‘g ‘v 's105892014 - mm pue «lg ¢lg

‘wa3sks peInqriisip ayl jo [2pouw pasodoad a4y, {*C 2and1y

«sanpow udamiaq SRUT] uoriEdTUNUWOd I[QFSSOd - -~ —

.s10ssad0ad pue S[npow UIamIvY SUT] UOTIBITUNUMO]D

- —
-

- ——————— e =

2.2 Brief Review of Literature

Since the mid-1960's several investigations have been done in the area
of distributed computer systems. Distributed systems has received
increased attention in the recent literature. Some of this work will be

discussed briefly next.

Harold S. Stone [5] has shown how the program, modules of a program
may be assigned to the processors in a distributed computer system so as to
minimize the overall cost, including two types of cost: the cost of
running an individual's module on a processor and the cost of
interprocessor communication that arises in the event of transfer of

control of execution from one processor to another.

V. B. Gylys and J. A. Edwards [4] introduced a performance measure
for a real time-distributed network and discussed computational techniques
for obtaining optimal work load partitioning over a network configuration.
Optimality is attained by the assignment of programs of computers which
minimizes the intercomputer bus traffic, subject to constraints on the
maximum loading of each computer. This principle could be wused to
determine workload partitioning both at design and in real-time;
furthermore, at design time, it can also be applied to finding optimal
network configuration for a given software design. Gylys and Edwards,
proceeded with formulation of an optimally criterion for workload
distribution and derived a mathematical optimization problem; subsequently
it examined the computational techniques for solving that particular

problem; it ended with a critical assessament of the proposed method.

——— e -

- Set———- -

The problem was to find an assignment of program modules to the
processors 1In the network. We researched to make such an assignment
efficient by using the method of Ford and Fulkerson [8] that has been
developed for maximizing flows 1in commodity networks. The maximum flow
algorithm was extended to solve the multi-processor models. This is to say

that the value of a maximum flow in a commodity network is equal to the

- weight of a minimum weighted cutset of the network. A cutset of the

commodity network is a set of edges which when removed disconnects the
source nodes from the sink nodes. This is explained in detail 1{in Chapter

11.

W. W. Chu, L. Y. Holloway, M. Je. Lan, and K. Efe, [10]
concentrated on the problem of task allocation {in distributed data
processing. A distributed processing system has coaflicting requirements
and this paper therefore, made a compromise to find the optimum assignment
policy for a task. Different approaches for solving the assignment
problems have been surveyed. All of the possible methods for partitioning
a task have not yet been fully investigated, although some proaising

attempts have been reported.

v. Balanchandra, J. W. McGredie, and O. I. Mikhai [1]
investigated the job assignment problems in a network of non-identical but
functionally similiar computers. Periodic review models are formulated
utilizing (0-1) integer programming, network flow algorithms,
transportation problems and heuristic balancing procedure. They
investigated the power of each; to determine what type of information
about job requirements is needed; to compare the processing requirements

and the quality of the solution for each formulation.

10

Zdward K. Bowdon, Sr. (3] has done research, aimed at developing
: analytical tools for system modeling and analysis of real-time computer
networks. He formulated an idealized mathematical wmodel for multiserver
systems with a finite length nonpreemptive priority queue. Given that jobs
consist of dependent tasks having linear loss functions, Bowdon formulated
an algorithm for assigning priorities to tasks. He defines a feasible
successor set of tasks as a subset of tasks which can be scheduled
iandependently. Each task 1s weighted by the maximum cost rate per task
over every feasible successor set of the task and the task set (s divided
into levels based on the precedence relationship awmonyg the tasks.
Generally, the algorithm gives priority to tasks within a given level.

This algorithm is in general, suboptimal.

Kennal Efe [7] extended the work done by Chu, Holloway, Lan and
himself to find a heuristic for task allocation in a distributed system.
The purpose of his study for task allocation scheduling {n a set of
interconnected processors was to reduce job turnaround time. This was done
by wminimizing any communication between processors. A distributed
processing system has conflicting requirements; therefore some compromises

were made in order to find the optimal agsignment policy for a task.

y 3.0 THE ASSIGNMENT OF MODULES TO PROCESSORS

3.1 Development of Model

Distributed processing enhances system(s) performance by employing
several processors to handle the processing load. A representation of the

distributed processing system is shown in Fig. 3.1. The key elements in

e rr— -

\

\}
c
ASSIGNING
MECHANTSM

COMMUNICATION FRONT END

‘ Figure 3.1

The distributed processing system illustrating the
assigning mechanism.

11

12

this system are a set of modules to be processed {11,..12...gn} and a
module allocation or a module assignment mechanism, C, which assigns each
of the 1 modules to one of the n processors, {Sl’ SZ...Sn}. In general,
the number of modules is much higher than the number of processors. There
can be a mechanism where the processors in this environment communicate
among themselves via interconnection mechanism shown in Fig. 3.1l. Modules

may be assigned to different processors for the fastest processing time.

The intermodule communication between any pair of modules is
determined by software design and fixed attribute of the modules at the
time of module assignment. We have to assign modules to processors so that
all processors are approximately evenly loaded. The example of the ideal
balanced assignment strategy is exhibited in Fig. 3.2 where six modules
have to be processed by three processors, i.e., these are the modules {il,
12,...16} which are to be assigned among the three processors {31, Sy, S3}.
We assume each module has identical processing requirements and processing
time, and that each processor has 1identical processing abilities. For
simplicity, let wus also assume that the processing time of each processor
is one minute per module, i.e., for the case illustrated in Fig. 3.2, the

system 1s able to process the module assignment in two minutes.

Figure 3.2 exhibits the following:
8 will process 1; and i,
S9 will process i, and iy

S3 will process i3 and ig

Thus the required total time equals two minutes.

!
i
!
!

I Figure 3.2 The example of the ideal balanced assignment strategy.

13

—~

14

The objective is to distribute modules in a manner such that maximum
number of modules can be processed simultaneously for the maximum system

performance.

The method used is a graphical method where modules to be assigned are
like a set of nodes in a network. We assume the inter-module communication
time between the modules are known, represented by the time unit or by the
weight of undirected arcs connecting the nodes. An inter-module or module
to processor communication of zero means that no communication takes place
between the two modules or between the module to processor. They are
connected in the network to show that there could be communication. An
inter-module or module to processor communication time of infinity means
these modules should not be processed by that particular processor. We
also assume that all processors are ready and available at all times for an

assignment.

Therefore, the assignment strategy in this model is to minimize total
processing time defined as the sum of the processing time with respect to
the module connection to the processor. In order to represent the
inter-module communication and/or module to processor assignment, we

propose the following assignment model.

3.1.1 Assignment Model

Given the network configuration the objective is to assign modules to
processors with the objective of minimizing total time where total time is
the running time of modules ta the processors plus the intercommunication

time among the modules. The problem can be formulated as a linear

——— e e

g

15

programming problem as following:
Define Xij = 1 if module { is assigned to processor j, O otherwise.
Let tyy = running time of module i in processor j

tikiz = intercommunication time for modules i} and ig
I = set of modules, {1, 2, ...,m}.

J = set of processors, {1, 2, ...,n}.

The model can be stated as:

Minimize 2: E: ti3 xij + 3 2: E: tikiﬁ wikioi
iel 4eJ jed dpigel .

(1)))3

t, . .
il Tipdgy

jeJ dpdgel

subject to
m

2) Y Xg5 21 for all jeJ
i=1
n

3 T Xy o=l for all iel
j=1

4 =0 for all (i, i,) and j

X, . - + -
td T Fgy T Ondey T Yty

xij >0 for all icl and jeJ

The above module assigns at least one module to each processor with
the objective of minimizing total running time. 1If there exists no

constraint as to the utilization of processors (i.e., not all the

-

-~ -

16

processors need to be uged), then one can simply remove the first

constraint set from the above model before solving the problem.

To clarify the procedure, the following simple, five modul:s, three
processors problem is modeled as an assignment problem and solved using the

available LINDO (Ref. 9) package program. (See Appendix I).

Tables I and II give the intermodule communication times and module to

processor communication times, respectively.

The optimal assignment as read from the computer output is as follows:

Module Processor
A 1
B 2
c 3
D 3
E 3

Total running time = 33 time units.

e———— e — e =

——— e .

. - ——— -

TABLE I.

INTER MODULE COMMUNICATION TIME

17

MODULE A E
A - l
!
B 1 '
C 7
D
E
TABLE II. MODULE TO PROCESSOR COMMUNICATION TIME
MODULE S S2 S3
A 3 12 15
B 10 4 12
C 12 14 4
D 10 7 5
E 4 7 3

———— e = e =

18

3.2 Extensions to Model

The above model assigns modules to processors with the objective of

minimizing total running time. It assumes that:
(a) Each processor must have at least one module assigned to it.

(b) Each processor has enough capacity to handle all the modules

assigned to 1it.

(c) There exists only one of each type of module in the system.
(d) Workload of the processor is not an issue.

The above assumptions can be relaxed as the assignment wmodel can be
modified to incorporate the changes. To celax the first assumptlion, one
simply removes (2) which is the first constraint set from the model. To
relax the second assumption, one needs to introduce a new constraint set
indicating that the memory space needed by the modules assigned to a
specific processor must not exceed the total available memory space in the
processor. Let m{ denote the memory space required by module { and My

denote the total amount of available space in the jth processor. Then,

n
Z my Xij < Mj for all jeJ.

i=1

It should be noted that the inclusion of this constralnt set to the
existing model destroys the topology of the model. One can not now
guarantee integer solutions. Therefore, one needs to use some other
solution methods, 1like integer programming methods, to restrict xij
variables to have values of 0 or 1, which decrease the efficiency of the

model considerably. A similiar problem, called the job scheduling problem,

with no communication between the jobs has been efficlently solved as the

ot b

. - — - -

19

knopsach problem and presented at the ORSA/TIMS San Diego Conference
(October 1982). The existence of intermodule communication in our model

prevents us to use the above mentioned algorithm.

The third assumption 1is the subject of the proceeding section. The
last assumption can be relaxed by adding another set of constraints into
the model which turn decreases the efficiency of the proposed solution. A
more realistic approach would be to get the assignments neglecting the
workloads and then reschedule modules to processors in a way to balance the
workload with the objective of minimizing the increase 1in the total

processing time.

3.3 Asgignment of Additional Modules

The utilization rate of wmodules plays an important role 1in the
scheduling process. Scheduling highly used modules to one processor
increase the queue length for that procesor and in turn decreases the
realiability of the whole system. Duplicates of the module must be
assigned to other processors to resolve this 1issue. How many of each
module and to which processors to be assigned are the concern of this

section.

Let Py denote the utilization rate of module 1, which is a
predetermined number. The expected number of wmodule 1, E(i), can be
calculated by multiplying the utilization rate of module i by the available
number of processors. That is,

E(1) = P{ xn

The procedure that we propose 1is the following: neglecting the extra

20

modules. Solve the assignment problem as explained in section 2.1 and get
the initial assignments. Then, calculate E(i) for each model. The
assignment of extra modules to the processors will be obtained by solving

the following linear programming model.

Minimize Y Z ty; x]Lj
1eI jed

Subject to E: Xij E(1) -1 for all 1
j

xij = 0 1if module 1 is assigned to processor
j in the previous assignment problem

X

(.

ij 1 for all i and j.

where ti1 is the processing time of module { in processor.

The above program assigns ftne extra modules to processors with the

objective of minimizing total processing time.

Table III gives the utilization probability for each module and the
expected number of modules required from each module for the problem given
in Table IV and E4 is taken to be the smallest Integer greater than or

equal tj the product Py x n.

TABLE III
MODULE Py Ej
A .2 1
B .5 2
c .8 3
D 4 2
E 7 3

The assignment model and the solution for the above problem

Appendix II. Table 1V summarizes the solution.

21

is given 1in

et et

. ——— . .

TABLE 1V
PROCESSOR (S) TIME
MODULE # OF MODULES ASSIGNED REQUIRED
A 1 Sl 3
B 2 81, Sy 14
C 3 Sl, SZ’ Sq 30
D 2 Sy, S3 12
E 3 Sl’ SZ’ S3 14

22

3.4 Scheduling HModules To Processors Using Network Flow

Approach

There exists a close relationship between assiznment and network flow
models. Simply, one is the dual of the other. Therefore, the scheduling

problem can be attacked as a network flow problem in the following way.

Let the processors and modules be the nodes of the network. A set of
arcs connect modules to modules and modules to processors. 1If arc (i,]j)
connect module i to module j then tij indicate the intercommunication time
between modules 1 and j. On the other hand, if arc (i,j) connects amodule i

to processor j then tij is calculated as

i] k#3

keJ

that is, tij is the sum of processing times of module i in the processors
other than j less the processing time of module i in processor j divided by
number of processors minus one. Figure 3.3 is an example to such network
configurations. The problem of assigning modules to processors with the
objective of minimizing total time can now be translated to the problem of
finding a multicut with minimum value. The set of modules in the subset of

a processor will be assigned to that processor.

The procedure for n processor m module rroblem can be summarized as

follows:

o — - -

‘s [] [/]

Figure 3.3 An example to the network representation
of the problem.

Definition: A multicut partitions the graph into n disjoint sets where

each set contains one and only one processor. No proper

subset of this cut is also a multicut.

Figure 3.4 is an example of a multicut for the given networ..

processor

module

Figure 3.4 Example of a multicut,

1I.

1. Construct the general network.

2. For each processor 5;, find the maximum flow from processor
S; to all other processors. Strre the minimal cut. At this
step n maximum flow problems will be solved and n minimum

cuts will be located.

3. Form n~} multicuts.

4. The multicut with the minimal value generates the desired

assignment.

3.4.1 Flowchart For The Algoritha

INITIALIZATION

Given the network configuration, read and store the data.

Set MIN = 0, KK = 0

MAXFLOW

For each processor 8i: Maximize the flow from 54 to all other
processors (LINDO software package is used at this step). Retain the

minimal cut, C4.

III. MULTICUT

Iv.

Using the n minimal cuts, (C's) generate (n-1) multicut. TTy
denotes the value of the minimal cut C;,{.e., the time of
running modules in the assigned processor (s). TIMC; denotes
the value of the jth multicut.

MINIMUM MULTICUT

Among the n generated multfcuts locate the cut with mintmum capacity.

—— ———— e

25
3.4.2 Example 1. Two-Processor Problem

Consider the network of Fig. 3.5. The inter-module
communication times for this network are shown 1in Table V. The

module-to-processor communication times are shown in Table VI.

The objective is to minimize the total absolute running time of a
program in the network. The network in Fig. 3.6 can then be
constructed with nodes for each of the wmodules and inter-amodule
communication times on the arc Joining the nodes. In order to
represent the processing time, two additional nodes are added to the
network to represent the two available processors S; and S;. The
running time of each module on processor §; 1is denoted by the arc
joining that module node to the node Sy . Similiarly, running time of
each module on processor S, is denoted on the arc joining that module

node to the Sj.

If a max-flow-min-cut algoritha [8] is performed on the network
of Fig. 3.6, the cut shown by the heavy dark line on Fiz. 3.7 is
obtained. As shown in Fig. 3.7, modules A, B, C, D, and E are
assigned to processor Sj while module F is assigned to processor $,

(See Appendix III for computations).

While this method is attractive in its simplicity, it has several
limitations. The basic min-cut solution provides for a minimum time
assignment between two processors. In general, an execution of this
method to an arbitrary number of processors requires an N- dimensional
mini cut algorithm, which quickly becomes computationally intractable.

This limits the wusefulness of the method in many applications. An

—

Figure 3.5

Inter-module communication graph.

26

o - o

Figure 3.6

Intermodule and module-~to-processor
communication graph.

27

Figure 3.7

The solution to the two processor problem.

28

. - —————

29

extension of this method to allow assignments among three processors

or more is now proposed.

3.4.2 Example 2. Three-Processor Problem

The intercoannection graph for a three-processor and five wodule
assignment 1is shown 1n Fig. 3.8. This network 1Is used with
undirected arcs to find the relationship between processors and
modules. Our research has shown that the maximum flow algorithm finds

an optimal position for a three-processor system.

Table VII shows the time each module will take with a given
processor. Therefore, when the program execution begins, the floating
modules will be assigned to the processor which will process where the
computation time is minimum. As an example, the best zuess for module
A will be processor 51 and for module B will be processor 35, etc.
The weight of a branch 1is the total time charged to intermodule

references represented by the branch.

Therefore, if k references between two modules occur during the
running of a program and each reference takes t seconds, then when the
modules are assigned to a particular processor, the weight of the

branch representing these references is kt.

30

*}10MI2U UOTIVBUUODADIUT S[npow Y[g*f 2and1y

31

€ L y 1
S L 01 a
L 194 14 o
14 9 sz g
14 44 Y v
ts g Is AINAOR

40SSAD0oud NIAID V NC SITNAOW FHL 40 FWLL ONINNOY TVIOL THL *1IA 419Vl

roe— .=

e .

32

Since our objective 1s to minimize the total running time of a
program, on a given processor, the only time factor taken into
consideration is in Table VII, which gives the total running time on
each processor. Also, in a distributed computing system, there is no
parallelism of module execution within a program. Therefore, Table
VII gives the total running time of the modules on their assigned

processors. The problem was set having undirected arcs.

By solving the maximum flow problem on the network one gets the
minimum weight cutset which determines the module assignment. This
indicates that an optional assignment can be found by running a
maximum flow algorithm on the network. The cutset will be defined

later.

At this point, the dummy processor S, with infinity flow going
into two of the processors is added. This means that when processor
Sy 1s active the infinity flow from 5, will go to processor S, and
processor Sj. Infinity flow 1indicates that the module cannot be
assigned to that particular processor. This was done to each

processor in the problem (See network in Figs. 3.9, 3.10, 3.11).

The flow was minimized via the constraints related with the
modules and its intermodule references represented by the branches.
When S; was selected to be the active processor and the dummy
processor S, was connected to 5, and 83 respectively, the cut-set was
17. This includes the branches BA, ESy, DA, CA and DSy. (See Fig.

3.9 and computer print-out in Appendix IV-a).

33

3

——

34

kg pue lg o3 paloouuoo %5 1osssd0ad Lwunp 9yl pue 8AriIde (g 10S§s8001d JO UOTIBAISN[[]

or°'¢

aindry

35

&g pue lg o3 po3oauuod Yg 1ossasoad Auump 943 pue aarior bg aossanoad jo uorieaisnyij

11°¢ aan31y

e — -

36

The same was done to the other processors. This time S, was
active and dummy processor SA was connected to 54 and S3 respectively.
The cut-set in this case was 27 and included branches AB, CB, DB, EB

and DSo (See Fig. 3.10 and computer print-out in Appendix IV-B).

When S5 was active and dummy processor S, was connected to $1 and
Sy respectively, the cut-set was 26. The branches include AC, BC, DC,
EC, DS3 and ES3 (See Fig. 3.11 and cowmputer print-out in Appendix

IvV-C).

Now consider again the example of three-processor and five module
network shown in Fig. 3.8, with the running times fcr each processor

given in Table VII.

The linear programming model was used to determine the cut-set
when all the three processors were active. The value of the objective
function was found to be 38, which gave the following cut-set (See

Fig. 3.12).

In this cut-set the relationship between Fig. 3.9 and Fig. 3.10
is shown, where the cut-set values were 17 and 27 respectively. The
total of these two cut-sets equals 44. Subtracting the common arc
which is AB with a processing time of 6 yields 38, the present cut-set
value. Similarly from Fig 3.9 the cut-set value of 7 minus the arc AB
of 6 gives a value of 11, which when combined with Fiz. 3.10 whose

cut~set value of 27 gives the present cut-set value of 38.

Considering the above factors and the distribution of modules to

processors in Fig. 3.12 the following assignment {s the solution,

37

*a1npayds 10ss900ad 03 apnpow [ewridp

Z1°¢ 2and1y

© e mm—m— .

38

Module A to Processor S
Module B to Processor S,
Module C to Processor Sg
Module D to Processor S3
Module E to Processor Sq

The linear programming model constructed was used with the

LINDO[9] software package to get the above assignment solution (See

Appendix 1IV).

4.0 SCHEDULING ALGORITHM

4.1 Multiprocessor Scheduling Algorithm

Assumptions:

The following are the assumptions 1in connection with the

developeant of the model.

1.

The algorithm assumes that each module sends its received mnessage
forward, along a chosen link to the processor. This aeans that
when a module has to be processed it does to the processor along a

link for best execution time.

The processors in the network are homogeneous and they are fully
connected. This means that all the modules in the network are
fully connected to the processors. Except for any attached
modules which must be processed by a particular processor, in

general the modules could go to any processor for processing.

— e,

39

3. The message eventually arrive at their final destination, taking
into consideration the fastest computation time on any given
processor. This means that, when a module has to be processed, it
should be processed by the processor which requires the minimum

amount of time.

4. The module-to-processor communication time is known and given.

5. The number of modules in a network is, in general, much higher

than the number of processors.

It is noted in this connection that the efficiency goes down by
increasing the number of processors, and hence only three processors,
an 80% efficiency level has been used. This observation was based on
research done at Digital on 2 DEC Systems, verifying that when
additional processors are included after the third procesor to the

system, the efficiency of the system goes down [2].

The general procedure for the proposed heuristic in now defined.

STEP 1.

Establish the computational time coanstant. This constraint
assumes that a module will be assigned, only to the processor
which takes the least amount of time for processing, if it is
not an attached module.

STEP 2.

Establish the load balancing constraint. In our case we

asgume that a particular processor at any given time should

———— -

40

not process more than 10 Million instructions/sec and

less than 0.5 Million instruction/sec, that is 0.5 Million <
Information/sec<10 Million. In the first case it would be
considered to be overloaded and in the latter

case it would be considered to be underloaded.

STEP 3.

Establish the priority constraint. 1In some cases in a

network, some modules may have to be assigned to one particular
processor in order to be processed, taking into consideration
their unique capabilities. 1In this respect we could first assign
those modules to the particular processor and then start from
Step 4.

STEP 4.

Set up the precedence relationships among the module to be
processed. This will identify which module should be processed
first for a given program or operation.

STEP 5.

For each program or operation, create a set of I number of
modules through which that program has to pass, to be
processed. Set up the precedence relatioanship(s) for each
program or operation using the relationship(s) established

in Step 4.

STEP 6.

In relation to the overall performance of the procedure
discussed for this problem, one should cousider the
utilization rate of the functions. This means finding out
which modules in the network occurs most. Then the modules
are to be set accordingly, to carry out those particular
functions. Also, it is required to utilize as many

modules as possible to handle the most frequent functions.
STEP 7.

It is assumed that all the available processors have the
capability to process each of the above modules which occur
frequently can be assigned to any available processor for the
fastest computation time.

SIEP 8.

Assign the set of the I modules formed in Step 5 to processors
so that those modules could be processed fastest. Take
computation time on a given processor into consideration.
STEP 9.

Make the above assignment to separate processors so that the
load balancing is maximized, without violating the
precedence relationships.

S1EP 10.

Choose the mth assignment (corresponding to I =) from

Step 8, and if this assignment satisfies the load balancing
constraint and the computation time constraint along

with the attached module constraint (if any), then stop;

otherwise go to Step 1l1.

42

STEP 11.
Identify the overloaded and underloaded processors.

STEP 12.

Assign some modules from overloaded processors to underloaded
processors taking Steps 1, 2, and 3 into consideration.

Then go to Step 10.

The algorithm presented here provides a scheduling scheme for the
assignment of different modules to available processors, to minimize the

total time on a given processor, on a distributed system.

5.0 SUMMARY

The problem of finding an assignment of wmodules to processors to
minimize the total processing time, where the module-to -processor
communication time is given, has been considered. The algorithm presented
in this report provides a scheme for assignment of modules to processor in

a distributed computer system.

The model represents modules as nodes in a graph and the module-
to-processor communication times as weights on the undiracted arcs
connecting modules to processors. The methodology is to assign modules to
processors so that total processing time 1s aminimized. The standard
max~flow= min-cut algorithm (8] can obtain the required assignment.
However, the computation becomes intractable for a large number of

procegsors.

—————— e —

43

The proposed linear programming model minimizes total processing time
subject to resource limitation constraints described in Section 4.0.
Moreover, a procedure has been shown for handling additional modules
introduced to the network, taking the utilization rate into consideration.
The utilization rate of each function which is nothing but a function of
each module, can be found simply by executing a test run before the initial
setting up of the computer systems. This could also be updated

periodically.

The heuristic models provide appropriate solutions to the module
assignment problem. The basic 1idea of heuristic methods is to find an
assignment for the modules to processors and to balance the load among the
processors. Load balancing is an important problem in distributed computer
systems, a problem which is yet far from being solved completely. Also,
the question remains how the relationship will be expressed between the
precedence relations and the queuing delay. These are definitely importaant

problems requiring further research.

- m—— e -

44

6.0 REFERENCES

V. Balanchandsan, J. W. McCredie and 0. I. Miklait, "Models
of the Job Allocation Problem in Computer Networks”, Proc.

Compcon, Fall 1973, pp. 211-214.

Digital Introduction to DEC-net, Massachusetts, January 1980.

Edward K. Bowdon, Sr., "Priority Assignment in a Network of
Computers”, IEEE Transactions on Computers, Vol. c-18, No. 11,

November 1969.

V. B. Gylys and J. A. Edwards, "Optimal Partitioning of
Workload for Distributed Systems", Tutorial of IEEE Catalog, No.

EHO151-1, 1979.

Harold S. Stone, “Multiprocessor Scheduling With the Air of
Network Flow Algorithms”, Tutorial of IEEE Catalog, No. EHO1l51-1,

1979.

Honey E. Elovitz and Constance L.Heitmeyer, "What Is A Computer

Network”, IEEE 1974 NTIC Record, pp. 1007-1014, 1974.

Kemal Efe, "Heuristic Models of Task Assignment Scheduling 1in

Distributed Systems”, IEEE Computer, Vol. June 1982, pp. 50-56.

Mokhtam S. Bazarra and John J. Jarvis, “Linear Programming and

Network Flows", John Wiley, New York, 1977.

. e eym—— -

10.

11.

12.

13.

45

Schrage Linus, "Users Manual for LINDO", University of Chicago,

Chicago, Illinois , December 1981.

Wesley W. Chu, Leslie J. Holloway, Min-Isung Lan, and Kemal Efe,
"Task Allocation in Distributed Data Processing”, Computer Vol.

13, No. 11, November 7, 1980, pp. 57-69.

Edirsinghe, Janaka, A Heuristic Approach For Module Scheduling In

A Distributed Computer System, M. S. Thesis, North Carolina A& T

State University, October 1982.

Pulat, S. and Janaka Edirisinghe, "Network Flow Approach to
Multiprocessor Scheduling”, Presented at the 1982 Joint National

Manufacturing of ORSA/TIMS at San Diego.

Frederick, M. and Harold Martin, "Reliability Method For Maximum
Efficlency in a System of Interconnected Processors”, To be
presented at the 15th Southeastern Symposium on System Theory,

March 1983.

APPENDICES

46

—a

APPENDIX I

SOLUTION OF THE ASSIGNMENT PROBLEM

47

«+R LINDO

48
LINDO (UC4APR79)
:*RETR
FILE VAME=
*GAJLINT
t*LOOK
ROW
s *ALL
MIN 3 RAL 4+ 10 X31 + 12 XCl + 10 XDL + 4 X1 + 12 ¥A2 + 4 132
+ 14 JC2 + 7 XD2 + 7 XE2 + 15 %A3 + 12 XB3 + 4 %C3 < 5 UD? = 3 u=3
+ Ja3l + Wa32 + WAB3 + YABL + VAB2 + YA33 + 1.5 IAC!
+ 1.5 WAC2 + 1.5 WAC3 + 1.5 YACL + 1.5 YAC?2 + 1.5 YACY + 1.5 wAD!
+ 1.5 WAD2 + 1.5 WAD3 + 1.5 YADl + 1.5 YAD2 + 1.5 vAD3 + 1.5 W3Cl
: + 1.5 WBC2 + 1.5 WBC3 + 1.5 Y3C! + 1.5 ¥Y3C2 + 1.5 ¥3C3 + 9801
+ WBD2 + WBD3 + YBDL + Y3D2 + YB3D3 + 0.5 UBEl + 0.5 WRE®
+ 0.5 WBE3 + 0.5 YBEl + 0.5 Y3E2 + 0.5 Y3E3 + WCDl + WCD2 + <ICD3
+ YCDL + ¥CD2 + YCD3 + 3.5 WCEl + 3.3 WCE2 + 3.5 WCE3 + 3.5 vorml
+ 3.5 YCE2 + 3.5 YCE3
SUBJECT TO
2) XAl + XA2 + XAl = 1
3 Bl + XB2 + XB3 = 1
4) XCl + XC2 + XC3 = 1
5) XDl + XD2 + XD3 = 1
6) XEl + XE2 + XE3 = 1
7) Xal - X31 + JABLl - YABLl = 0
8) XA2 - %82 + WAB2 - YAB2 = 0
9) XA3 -~ XB83 + WAB3 - YAB3 = 0
10) Al -~ XCl + YACLl - YACl = 0
1) XA2 - XC2 + WAC2 - YAC2 = 0
12) A3 =~ ¥C3 + WAC3 - YACS = 0
13) Al - XDl + WADLl -~ VYADL = 0
14) XA2 - ¥D2 + JAD2 ~ YAD2 = 0
13) XA3 -~ ¥D3 + WAD3 -~ YAD3 =)
15) XBlL - XCl + WBCl - Y3cC! 0
51) X¥32 ~ ¥C2 + WBC2 - Y3C2 0
17) X8B3 ~ XC3 + WBC3 -~ YBC3 0
13) X831 ~ ¥D1 + WBD! - Y3D! = 0
13) X832 - #%D2 + WBD2 ~ Y¥3D2 2
29) X8B3 - XD3 + WBD3 ~ VY3D3 = 0
21) {831 ~ XE! + YBEl ~ Y¥3BEl = 0
22 B2 -~ ¥E2 + WBE2 -~ Yu? = 0
23) 33 -~ XE3 + WBE3 - Y.L 1) = 0
24) XCl - ¥DL + WCDL ~ yIul = 9
23) XC2 - D2 + WCD2 ~ ¥YCD2 = 0
24) XC3 - ZD3 + WCD3 - vCD3 o]
27 L€l - XEl + WCsl -~ vCDi o= 0
213) €2 - KXE2 + WQCT2 ~ YCE2 = 0]
A7) XC3 = {E3 + 4CE3 ~ vCul b]
29) 0L - ¥ELl + NDELl ~ v¢ngl = 0
30 202 - ZE2 4+ YUDR2 - YDL2 =)]
3 D3 - XE3 o+ IDEY - Ingl =)
32, al <= 1
31 31 <= i
34) wCl o« !
35, ol o« !

e ———— e — =

36)
37)
38)
39)
40)
41)
42)
43)
44)
45)
46)
48)
49)
50)
EZND
NUHMBER
:*GO
LP OP

1)
VARIABLE

XAl
X31
XCl
LDl
XEl
Xa2
X32
Xcz2
XD2
K=

Xa3
X33
iC3
XD32

oo
e

JABL
WA32
WA33
TABIL
YAZ2

YAB2

El <=
XA2 «=
XB2 <=
IC2 <=
D2 <=
XE2 <=
XA3 <=
{B3 <=
XC3 <=
XD3 <=
XE23 <= 1

{Al + XBl +
A2 + XB2 +
XA3 + XB3 +

P e P e e e

XCl + XDl +
XC2 + XD2 +
XC3 + XD3 +

XEl >=
XE2 >=
XE3 >=

— o

INTEGER VARIABLES=

TIMUM FOUND AT STEP

OBJECTIVE FUNCTION VALUE

33.00000
VALUE
1.000000
0.000000
0.000000
0.000000
0.003000
0.000000
1.000000
0.0000900
0.00009%0
0.000000
0.000000
0.900000
1.000000
1.000000
1.00009090
0.000000
1.00009290
0.000000
1.000009
0.000000
0.029020
N.020030
N.NN0000
1.700000
1.000N20
N.3000239
0.0920000
J.0730009
J.330539
L3000
Le5u0))
D300
Vo100)
TedVUdan

REDUCED COST

3.000000
0.000000
0.000000
0.000000
0.030020
0.000090
4.000000
1.000000
0.090000
0.200000
2.090043
0.000000
0.3220000
0.3200209
0.00093%0
2.000090
0.000009
0.000000
0.0020000
2.000000
2.700000
3.0900000
3.020000
0.220090
0.000000
0.970900
3.7739090
3.7700300
2.7902130
e 33030
D300
3500990
3100000
3o

49

Tl i T S
RIS TR VTR PV IS S R SR Vo . AL G AR VI S W SR &

.

- v

- ——

W3C2
WBC3
Y3Cl
¥Ys3cz2
Y3C3
WBD1
UBD2
WBD3
Y3D1
Y3D2
Y3D3
WBEL
W3E2
W3E3
Y3EL
T3E2
Y323
WCD1
WCD2
WCD3
YCoOl
YCD2
YCD3
wcel
WCE2
WCZ3
Ycel
Ycel
YCZ3
WDEL
YoEl
WDzl
YD2EZ
WDI3

¥D:L3

N e e N s e s s e N e

[
—

Lo L

0.0000090
1.200000
0.000000
1.000000
0.1700000
0.000090
0.000000
1.000000
0.000000
1.320000
0.000000
3.000002
0.000000
1.000000
0.000000
1.000030
0.000000
0.000000
0.000000
0.000000
0.09200900
0.000000
0.000000
0.09003%0
0.0000939
0.000900
0.000000
0.000000
G.270003
2.090932
0.036213)
0.09200337
0.000020
2.299009
0.020099

SLACK

D.020020
N.00J3000
N0.0000030
2.300000
2.000009
J2.000000
2.000000
2.0729%000
0203099
Qe333J79
PRIV IV |
VIS P

i)l
Je g
Jedun
).‘l i l)
D))
Teo0)
Je o

()

P

]
e e e o e e

— e e e e

TN D A

3.000000
0.000000
0.000000
0.000000
3.000000
2.000000
2.000000
0.000000
0.000700
0.000020
2.000000
0.000000
1.000000
0.000000
1.000000
0.020009
1.000000
1.0000090
0.000030
2.000000
1.200070
2.0000920
D.000030
0.000009
1.9200009
0.2200030
7.000093
5.000500
7.000032
1.0170079
0.920093
- 2701339
0.0000720
0.3309239
2.9299030
DUAL PRICES
-9.000930
-19.000000
-4.530000
-5.520000
-7.000900
1.000039
-1.20002)
-1.000909
1.300099
[.520000
-1.352072)

3999
SDRED
!
DDRRTE

-1.3a090)
SUDRRE
Lediar

VR

—m

-

0.003000
2.000000
0.000000
0.000009
0.000000
0.000000
0.000000
0.090000
0.000000
0.000000
0.000000
0.000000
1.000000
34) 1.000000
35) 1.000000
1.000000
37) 1.000000
38) 0.000000
1.000000
1.000000
1.000000
1.000000
1.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
2.000090
0.000000
TIONS= 44
S= O DETZRM.= 4.700%
Z(SENSITIVITY) ANALYSIS?

[RERN SV VRN JC T SO 9
O W~ Wi e
N N N N e e e e

2 1919

~

W wwiw
[OSR R
~ ~

W
o
—

W
— OO0
NUENIN

EaE A AE A &

WO GO~ 0w

ATV

[o I - BN NN NP BN NN NN
.

LP OPTIAUM I3 I2 OPTIMU!I
¢ *QUIT

STOP

)

-2.330920
0.590000
-0.520000
0.000000
-1.200000
1.000900
-3.570000
-2.500000
0.000000
0.090020
0.000000
0.000000
0.000000
0.000000
0.000009
0.000000
0.0000900
0.000000
0.000000
0.000000
0.000000
6.000000
0.00009090
0.200000
0.000000
0.000000
-3.330000
-1.000090
-2.000000
0.000000
1.500000

e ——————— =

51

APPENDIX II

ASSIGNMENT OF EXTRA MODPULES TO PROCESSORS

et e e -

52

Y

>

3 XAl
+ 14 XC2
SHVNECT TO

2 XAl

3 X1kl

4 X1

3 XL

éH) XL

7) XAl

2 X2

) XC3

100 Xn3
) XE3
12
13
14D
1%5)
14
173
1435
1)
200
200

t 1

Rt
28
'ﬂ b]
X)II-:j I
Ay

(R

L DFTTMUM FOUND AT

ORJECTIVE

1)

- 4+ o+

it

e e e e e = OO

34.00000

12 XAD b 15 XAS
4 XC3 ¢ 1) Xul
A2 b XAZ =
XHD2 4+ KHR =
XC2 4 KRB =
X024 XD3
XE2 + XEZ =
0
0

S5TER

t

FUNCTTON VAL UE

0

-y

10

1O XBrl t+ 4
AR (R

g Joal TR VALUE REDUCED COST

! 41, 0L.000000 3.000000

i i 0.0H0000 12.000000
Kiv3 0,000000 15.000000
2R L.000000 0.000000
L T 0000000 0.000000
‘M3 0000000 2000000
“0 1000000 0.000000
RE R 1000000 0.000000
€3 0. 000000 3.000000
T, 0000009 3.000000
A2 LQ00000 0.000000
£ UK 0.000000 0.000000
AFL 1.000000 0.000000
<F 2 1.000000 0.000000
A3 0.000000 0.000000

¢

'

1]

X113

A LRCI S e
L B (B

JX
t

L
7 X2

53

X

t 3 X3

ROW
2
b

7)

1)

?)
10)
11
122
13)
14)
15
16)
17)
18)
19)
20)
20
270
2%
24
2%

24D

N

) RANGE (SENSITIVITY) ANALYSIG?

s

TTERATIONS:=

SLLACK
0,000000
3.000000
0.001°000

0 Q0GnN0
VHYUCUGU

0.000000
0.000000
0.000000
0.,000000
0.000000
1.,000000
1.000000
1 .000000
0.000000
1.000000
0.000000
1.000000
0.000000
1,000000
1.000000
0.000000
1.000000
0.000000
0.,000000
1.000000

10

nuAL. FRICES

0.,000000

10,000000

13.000G00

-, . 000000
=7 +UVULUUU

0.000000
6.000000
10.000000
2.,000000
4,000000
0.,000000
0,000000
0.,000000
0. 000000
0+000000
2,000000
0.,000000
0.000000
0.000000
0000000
0.000000
0.000000
3,000000
0,000000
0.000000

c—— o —

. ——

APPENDIX TII

NETWORK FLOW APPROACH TO TWO PROCESSOR SCHEDULING

EXAMPLE PROBLEM

e r————— e+ =

55

e

- ———

56

MAX F
SUB JECT TO

2) F - FS1A - F§1K - FSIC ~ FS10 - FS1E - FSLIF =

3 FS1A + FEA + FFA Fea FAL - FAF - FAC ~ FAS2

4) FS1E - FEA + FAR FEE + FOR ~ FRS2? - FRE - FED
5) FS1C - FCA + FAC FEC - FCS2 - FCE 0
}.
'.
+

é4) FS10O - Fhe - FRD FED -~ FND62 - FIDE 0

7) FSIE - FEB - FRE FEC + FCE - FED + FDE - FES2
8) FS1F - FFA FAaF FIFS2 = 0

) - F + FAS2 + FRS2 + FCS2 + Fns2 + FES2 + FFG82 =
102} FSla o=

1 FS1R
12) FS1C -
13 FSin
14) FS1E
15 FSLF =

R

14) FAR 0= ?
17 FRA <= ?
18) FAC = 4
19) FCA <= 4
20) FAF <= 12
20 FFA 0= 12
22) FRO <= 12
25 FIR <= 12
24) FRE == 3
2% FER <= 3
26) FCE = 11
27) FEC <= 11
28) FIOE = 3
29) FED <= S

30 FAS2

3B FRG2

32 Fcs2

33 FDs2

34) FES2 =

35 FF32
E NI

G0
L OFTIMUM FOUND AT STER 17
OBJECTIVE FUNCTION valLUE

1) 38.00000

—————p— e e

i O

—— o

- . -

VARIARI.E

=
FS1A
FS1R
F51C
FS1D
FS1E
FS1F
FERA"
FFA
FCA
FAR
FAf-
FAC
Fas2
FER
FI
FIs2
FERE
FRI
FEC
l (" ("’)
FCIEE
FED
FLs2
FDE
FE
FF

52
52

ROW
2)
3
4)
5)
)
7)
8)
9)

10)

1)

12)

13)

14)

1%

16)

17)

18)

19

200

21)

22)

23)

VALUE

38.000000

10.000000
?.000000
4.000000
3.,000000
84000000
4.000000
7.000000
0.000000
0.000000

0.000000
12300000y

0.000000
5.000000
0.000000
0.000000
2.000000
0.000000
0.000000
0.0000090
4.000000
0.000000
3.000000
4.000000
0.000000
5.000000
164000000

SILACK
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
1.000000
0.000000
0.000000
4.000000
0.000000
9.000000
2.000000
4,000000
4.000000
0.000000

12.000000

12.000000

12.000000

REDUCED COST

0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
1.00000¢0
0.000000Q
0.083000

ERVIVIVIVIVIV
0.,000000
0.000000
0.,000000
0.,000000
0.000000
0,000000
0.000000
0.000000
0.000000
0.,000000
0.000000
0.000000
0.000000
0.000000
0.000000

AL FRICES

1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
1.000000
0.000000
0.,000000
0.000000
0.000000
1.000000
0.000000
0.000000
0.000000

57

e+

- —— -

24) 3.,000000
29 3.000000
26) 11.000000
27) 11.,000000
28 5.000000
29) 2.000000
30) 0.000000
I 0.000000
32) 0.,000000
33 0.000000
34) 0.000000
35 2,000000
NO. TTERATIONS= 17

0 RANGE (SENSITIVITY) ANALYSIS?
N

SQUIT

0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
1.000000
1.,000000
1.,000000
1.000000
1,000000
0.000000

e—— a—— s s i %

58

. —

APPENDIX IV-A

60

'JAN'; PROCESSOR Sy IS ACTIVE AND THE DUMMY PROCESSOR

S, 1S CONNECTED TO PROCESSOR 5, & S

. -

APPENDIX IV

NETWORK FLOW APPROACH TO THREE PROCESSOR PROBLEM

59

* rm

.

.

APPENDIX IV-A

'JAN'; PROCESSOR Sy IS ACTIVE AND THE DUMMY PROCESSOR

S, IS CONNECTED TO PROCESSOR S, & 84

60

v it =

«+«R LINDOS
LINDO (2C3AUG79)

61

:*RETR
FILE walEs
*JAN
: *LI0OX
RO
>*ALL
MAR T
SUBJECT TO .
23 TASL + FAR + Fa FAD - F3A - TCh - T©na = 0
3) - FAB + F3A + FRC F3D <+ FBE + FBS2 - FC3 - FDB ~ FER
- F323 = 0
4) - TAL + FCA - FBC FCB + FCD + FCE + ©¥FCS3 - FDC -~ FEC
- F33C = 0
5) - FAD + FDA - FCh FDC + FDSLl + FDS?2 = FDS3 - FS52H -
= o]
o) - F3E + FE3 - FCE 4+ FEC + FESl + FES3 - F§3F = 0
7) F - FAS1 - TFDS1 FES| = 0
8) -~ F352 + F523 - FDS2 + FS2D - F5432 = 0
9) - FCS3 + FS3C - FDS3 + FS3D - FES3 + 7FS3T - FS4853 = 8]
10) - T + FS84S2 + Fs433 0
11) FAS]l <= 1000
12) TESY <= 3
13) ¥DS1 <= 1
14) FS452 < 1000
13) FS4353 <= 1000
13) Fad <= 6
17) ¥3a <= [5)
13) FAD < 4
13) DA <= 4
20) FAC <= 3
21) FCA <= 3
22) FDS2 <= 4
23) FS52D <= 4
24) FDB <= 7
23) F3D <= 7
20) FDC <= 5
27) FCD <= 5
28) FDS3 <= 6
23) FS3D <=)
30) FCE <= 2
31) FBC <= 2
32) rCS3 <= 1000
33) 783C <= 1000
34) TCE <= 6
R TEC <= 5
35) F3E <= 3
27 FE3 <= 3
33) FES] <= 4
39) F33E <= 4
40) T382 <= 1000
41 £528 <= 1000
END
$X30

o o

0

VALUE

REDUCED COST
0.000000
0.000000
1.000000
1.000000
1.000000
0.000000
0.0300000
0.000000
0.000900
0.000000
0.600000
0.000000
0.060000
0.000000
0.000000
0.000000
0.000000
0.000009
0.000000
0.000000
0.000000
0.000009
0.000090
0.1700009
0.000000
0.000000
0.000000
0.000990
0.0000090
0.0004300
0.000009
0.000000

DUAL PRICES
1.0000900
0.000000
0.000000
0.090000
0.000000
1.000000
0.000000
0.000000
0.0N0200
0.0001700
1.200099
1.000599
D.000330
20000000
DD DL
1.323007)
Yo 3N0)

LP OPTIAUN FOUND AT STEP 17
OBJECTIVE FUNCTIOM
1) 17.00000
VARIABZLE VALUE
F 17.000000
FASI 13.000000
FA3 0.090000
TAC 0.000000
FAD 0.000000
¥3A 6.000000
rCa 3.0000900
FDA 4.000000
r3C 2.000000
8D 0.000000
FBE 0.000000
£382 0.000000
FC3 0.000000
FDB 0.000000
FEB 0.000009
FS23 3.000000
FCo 0.000000
FCEC 0.0000090
£CS3 0.000000
3C 0.990000
FZC 0.000090
F53¢C 1.200000
T35 1.000090
7082 0.000030
TDS3 0.000090
32D 4.000000
53D 1.000000
FzSl 3.000000
TIS3 7.000000
FS53Z2 3.000000
3452 12.000000
TS433 5,00000Q0
ou SLACK
2) 0.0990000
3) N.000000
4) 0.000000
3) 3.900000
n) 0.000090
7 J.000000
2) 0.000000
3) 0.000000
) 2.900000
i 337.3000499
2 0.0700.))
oy YD)
. 233.000009)
3) JU3.900009
2 PR DD VA
/s 2.0909)0
s Y0
Ay D.993000)

L0029

62

SEOy U L) OO WS T W e o 0 = O
N Al N e e e e M N S N N N e N S e e

WWLWWWWLW WITIsIv Il le et to bty ba

W oW
O o
~

40)
al)

>%10
$*QUTT
STOP

0. ITERATIONS=
DO RANGI(SENSITIVITY) ANALY

3.090070
0.0900039
4.090000
J.003030
7.0200000
7.000200
5.290039
5.200890
5.000099
5.0000390
2.03000)
2.3206009
1000.0000090
399.0200000
5.000000
6.000000
3.000000
3.000000
4.000000
1.000000
1000.02900000
992.0200990
17

¢

w1

Ls?

0.0909000
1.000000
0.000000
0.5000900
0.2000395
0.009030
0.090000
0.090000
0.0030030
3.070099
3.003009
3.0000Q00
0.000000
0.200000
0.000000
0.000000
0.900000
0.000220
0.000009
0.009922%
0.000000
0.000000

63

A ¥

APPENDIX IV-B

""JANA'; PROCESSOR S, IS ACTIVE AND THE DUMMY PROCESSOR

2

S; IS CONNECTED TO PROCESSOR S;1 & S5

64

S RGPt 4 -

s o LINDOS
LINDO (TC3AUGTY)
PRREITR
FILE NAlE=
*JANA
t*LO0X
RYIY
>* ALL
Max v

SUBJECT TO

2 TASD + FA3 +

3) ~ TA3 + F3A + FB3S
= 0

4) =~ TFAC + TFCA - T3
- FS3C = 0

5) - FAD + FDA rB
- FS3D - £S10 =

6) - FRE + FE3 - FC

7) - FASL + FSla -

8) F - £3s82 -~ FDS

9) - FCS3 + FS3C -

19) - F + FS45! + FS

11) FASL <= 25

12) FS1lA <= 235

13) rab <= 4

15) DA <= 4

13 FAB «= 3

15) FBA <=)

17 FAC <= 3

1o) Fla <= 3

19) T3C <= 2

20) 723 <= 2

21) FB3D <= 7

22) rD3 <= 7

23) F3E <= 8

24 TE3 <= 8

25) FCD <= 5

25) FDC <= 5

27) FCE «= 6

28) FEC <= 5

29) TCS3 <= 25

30) F33C <= 25

31) FDS1 <= 1

32) FS1Dd «= 1

33 TDS3 <=)

34) 53D <= b5

335) TES4 <= 4

35 F338 <= 4

37 T3l <= 3

33) 317 <= 3

39) 352 <= 23

+1)) D82 <= 4

al) FSIS5! <= 1300

4 2) F3433 <= 1000

+ 3 TESY <= A

+

=]
Wyl n+

-

(&4

Loty 00 1O T

7]

o s

END
HEReIV]
L? OPTIMUM FTOUND AT ST= 29
OBJEICTIVE FUNCTION VALUE
17 27.00009
VARIA3ZLE VALUE REDUCED COST
£ 27.909000 0.000000
FAS: J.000009 0.020000
A3 0.000000 0.090000
TAQ 3.0009000 0.9900230
TAL 4.090000 0.000000
T3la 13.200030 0.000000
F3a 0.000030 1.000009
rCa 0.000000 0.000000
Foa 0.000090 0.000000
F3s52 23.000000 0.000000
F5L d.000000 1.000000
F3D 0.000000 1.000000
F3E 0.0009030 1.000000
FC3 2.000000 0.000000
FDE 7.000000 0.000000
FEB 8.000000 0.000000
FCD 0.000000 0.000000
FCE 1.000000 0.000000
FCS3 0.000000 0.000000
FDC 0.000000 0.000000
FTC 0.0000900 0.000000
FS3¢C 0.000000 0.000000
FDS2 4.000000 0.000000
FO83 0.000000 0.000000
FDS! 0.000000 0.0000900
FS3p2 6.0000090 0.000000
FSis 1.000000 0.000000
TIs! 0.000000 0.000000
T=83 0.000000 0.000000
FSiz 3.000000 0.000000
F83:z 4.000000 0.000000
TS4s! 17.000000 0.000000
F5452 10.000000 0.000000
TESS 0.000000 0.000000
ROW SLACK DUAL PRICES
2) 0.000000 0.000000
33 0.000009 1.000000
4) 0.000000 0.000000
3) 0,000000 0.000000
) 0.000000 0.000000
7 0.000020 N.200000
3) N.009029 1.990020
3 J.00900N 0.09090n
[y D.N1010090 0.030000)
il) 25.900000 3.000000
125 12.000000 0.000000
13) J0.000000 D.370000
14) 4.090%00 G.N00000
15) 0.690000 1.900000

66

———

[N N N

L D W 12 1D 10 w10 ba Lo fu 10 b b e b e
19 0= O U~ O U L D10 k= G s~ e

R N N

W
(V8)
~

5090309
0.000230
3.07703920
2.000090
J.6713000
7.5009370
J«N23000
3.520020
«3090923
5.090099
5.000099)
5.000039
5.000020
5.0350090
5.0000090
1.000000)
J.020000
53.000999
3.009020
4.000039
3.003309
3.90099790
0.0350020
2.006399
0.0937020
9383.070000
990.0000920

4700020

O

ro o

0.900090
0.000099
3.00939n
J.000%005
1.3020090
N.000009
1.0200090
0.070900
19200900
D.030001)
0.900099
J.020000
0.000000
0.000990
0.090000
0.091009%0
0.020990
0.0920090
0.0092902
0.000090
0.020009
0.000030
0.020090
0.950000
1.500300
0.00000¢
0.000000
2.209300

e — —————rn e =

67

- -

APPENDIX IV-C

*JANAK'; PROCESSOR S3 IS ACTIVE AND THE DUMMY PROCESSOR

S4 IS CONNECTED TO PROCESSOR S1 & 82

68

§ = g~

69
LINDO {UC3AUG79)
$*RITR
FILY NAME=
*JALAK
:*LCOK
RO
>*ALL
MAX F
SUBJECT TO
2) FAB + FAC + FAD + FASl - FBA - FCA - FDA - FSlA = 0
3) - FAB + FBa+ FBC + 73D + FBE + FBS2 - FCB - FDB - FEB
~ FS23 = 0
4) - FAC+ FCA - FBC + FCB + FCD + FCZ + F(CS3 - FDC - FEC
= 0
5) - FAD + TDA - FBD + D3 - FCD + FDT + FDSl + FDS2 + P05
- TFS1D - FS20 = S
6) - ITBE + FEB - TCE + FEC + FESL + FES3 - FSIE = 0
7) - FASL + FSlA - TD3Sl + FSID - FESl + FS1Z - F£S451 = 0
8) - FBS2 - FDS2 + TS2) + FS23 - FS432 = 0
9) f - TFCS3 - Fp33 - FIS3 = 0
10) - F + FS451 + F8432 0
11) FASL <= 25
) FSla <= 25
13) Fi3 <= 6
14) FBA <= 6
15) FAC <= 3
16) FCA <= 3
17) Fabd <= 4
18) FOA <= 4
19) F3C <= 2
20) FC3 <= 2
21) F3D <= 7
22) FDB <= 7
23) FBE <= 8
: 24) FEB <= 3
’ 25) FBS2 <= 25
| 26) FS23 <= 25
{ 27) FCD <= 5
; 28) FDC <= 5
: 29) FCE <= 6
39) FEC <= 4
31) FDSL <= 1
32) FSID <= 1
33) FDS2 <= 4
34) 520 <= 4
35) FZS1 (= 3
35) 7Sli <= 3
37) FCSJ <= 25
38) FDS3 <= 6
39) FIS3 <= &
]
4
]
[}
] .

- Ry W -

—

40) F3482 <= 1000
41) FS431 <= 1000

ELD
*G0

LP QPTINLYM FOUND AT STZP 18
OBJECTIVE FUNCTION VALUE

1) 256.00000

VARIABLZ VALLE REDUCED COST
F 26.000000 0.000000
TaAB 0.000000 0.000000
FAC 3.000000 0.000C00
FAD 4.000000 0.000000
FASL 0.000000 0.000C00
FBA 0.000000 0.000000
rCA 0.0C0000 1.000000
FDA 0.000000 0.000000
FSlA 7.000000 0.000000
F3C 2.000000 0.000000
FBD 2.000C00 0.000000
F3Z 7 .000000 0.000000
F3S2 0.000000 0.000000
FCB 0.000000 1.000000
FDB 0.000000 0.000000
FEB 0.000000 0.000000
FCD 0.000000 1.0C7000
FCE 0.000000 1.000000
FCS3 16.000000 0.000000
FDC 5.000000 0.000000
FEC 6.000000 0.000000
FDS1 0.000000 0.000000
FDS2 0.000000 0.000000
FDS3 6.000000 0.000000
FS1D 1.000000 0.000000
FS2D 4,000000 0.000000
FES1 0.000000 0.000000
FES3 4.D00000 0.000000
FSI1E 3.000000 0.000000
FS4S1 11.000000 0.000000
FS2B 11.000000 0.000000
FS8452 15.000000 0.000000
20W SLACK btAL PRICELS
2 0.u00000 2.000000
3) 0.000600V 0.u00000
4) 0.000000 1.GQunN00
5) 0.000000 0.000000
h) 1,400000 0.0000600
7 1).000000 J.006000

70

A

o

&) 0.000000 0.000000
) 0.000000 1.000000
10) 0.000000 0.000000
11) 25.000000 0.000000
123 13.000000 0.000000
133 6.000000 0.000000
14) 6.000000 0.000000
15) 0.000000 1.000000
15) 3.000000 0.000C00
i) 0.000000 0.000000
13) 4.0000090 0.000000
i9) 0.G600000 1.000000
2d) 2.000000 0.0300000
21) 5.000000 0.0000600
22) 7.000009 0.000000
23) 1.000000 0.000900
23) 8.200000 0.000000
23 25.000000 0.000000
23) 14.000000 0.000000
2T 5.000000 0.000000
23) 0.000000 1.000000
223 5.0600000 0.000000
30) 0.000000 1.000000
20 1.000C0D 0.000000
32 0.900000 0.000000
22 =.0000C0 0.000000
34 0.000000 0.000000
33y 3.000000 0.000600
35) 0.000000 : 0.000000
373 9.9000000 0.000000
3e 0.000000 1.000000
39) 0.006000 1.000000
40) 985.000000 0.000000
41) 989.000000 0.000000
50. ITERATIONS= 18

DO RANCE(SEHSITIVITY) ANALYSIS?

>*N0

1*NUIT

